Sample Green's Function Builder
This module provides subroutines to generate Green's function samples.
Lehmann.Sample.MultiPole
— FunctionMultiPole(β, isFermi::Bool, symmetry::Symbol, Grid, type::Symbol, poles, regularized::Bool = true)
MultiPole(dlr, type::Symbol, poles, Grid = dlrGrid(dlr, type); regularized::Bool = true)
Generate Green's function from a spectral density with delta peaks specified by the argument $poles$. Return the function on Grid and the systematic error.
#Arguments
dlr
: dlrGrid structβ
: inverse temperatureisFermi
: is fermionic or bosonicsymmetry
: particle-hole symmetric :ph, particle-hole antisymmetric :pha, or :noneGrid
: grid to evalute ontype
: imaginary-time with :τ, or Matsubara-frequency with :npoles
: a list of frequencies for the delta functionsregularized
: use regularized bosonic kernel if symmetry = :none
Lehmann.Sample.SemiCircle
— FunctionSemiCircle(Euv, β, isFermi::Bool, Grid, type::Symbol, symmetry::Symbol = :none; rtol = nothing, degree = 24, regularized::Bool = true)
SemiCircle(dlr, type::Symbol, Grid = dlrGrid(dlr, type); degree = 24, regularized::Bool = true)
Generate Green's function from a semicircle spectral density. Return the function on Grid and the systematic error.
#Arguments
dlr
: dlrGrid structEuv
: ultraviolet energy cutoffβ
: inverse temperatureisFermi
: is fermionic or bosonicGrid
: grid to evalute ontype
: imaginary-time with :τ, or Matsubara-frequency with :nsymmetry
: particle-hole symmetric :ph, particle-hole antisymmetric :pha, or :nonertol
: accuracy to achievedegree
: polynomial degree for integralregularized
: use regularized bosonic kernel if symmetry = :none