Self Energy

ElectronGas.SelfEnergy.Fock0_ZeroTempMethod
function Fock0_ZeroTemp(q, n, param)

Zero temperature one-spin Fock function for momentum. Assume G0^{-1} = iωn - (k^2/(2m) - E_F) and Yukawa/Coulomb instant interaction.

#Arguments:

  • q: momentum
  • n: matsubara frequency given in integer s.t. ωn=2πTn
  • param: other system parameters
source
ElectronGas.SelfEnergy.bandmassratioMethod
function bandmassratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray; kamp=param.kF)

calculate the effective band mass of the self-energy at the momentum kamp

\[ \frac{m^*_k}{m}=\frac{1}{z_k}\cdot \left(1+\frac{Re\Sigma(k, 0) - Re\Sigma(0, 0)}{k^2/2m}\right)^{-1}\]

source
ElectronGas.SelfEnergy.massratioFunction
function massratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, δK=5e-6; kamp=param.kF)

calculate the effective mass of the self-energy at the momentum kamp

\[ \frac{m^*_k}{m}=\frac{1}{z_k} \cdot \left(1+\frac{m}{k}\frac{\partial Re\Sigma(k, 0)}{\partial k}\right)^{-1}\]

source
ElectronGas.SelfEnergy.zfactorMethod
function zfactor(param, Σ::GreenFunc.MeshArray; kamp=param.kF, ngrid=[0, 1])

calculate the z-factor of the self-energy at the momentum kamp

\[ z_k=\frac{1}{1-\frac{\partial Im\Sigma(k, 0^+)}{\partial \omega}}\]

source